Busca avançada
Ano de início
Entree


A Deep Learning-based Radiomics Approach for COVID-19 Detection from CXR Images using Ensemble Learning Model

Texto completo
Autor(es):
Mostrar menos -
Costa, Marcus V. L. ; de Aguiar, Erikson J. ; Rodrigues, Lucas S. ; Ramos, Jonathan S. ; Traina, Caetano, Jr. ; Traina, Agma J. M. ; Almeida, JR ; Spiliopoulou, M ; Andrades, JAB ; Placidi, G ; Gonzalez, AR ; Sicilia, R ; Kane, B
Número total de Autores: 13
Tipo de documento: Artigo Científico
Fonte: 2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS; v. N/A, p. 6-pg., 2023-01-01.
Resumo

Medical image analysis plays a major role in aiding physicians in decision-making. Specifically in detecting COVID-19, Deep Learning (DL) and radiomic approaches have achieved promising results separately. However, DL results are hard to interpret/visualize, and the radiomic approach encompasses successive steps, such as image acquisition, image processing, segmentation, feature extraction, and analysis. In this paper, we integrate DL with radiomic approaches, aiding in detecting COVID-19. We use DL models to extract 128 relevant deep radiomic features to assess COVID-19 from several image sources of 392 representative chest X-ray (CXR) exams. We avoid successive radiomic steps by employing DL (transfer learning) from Imagenet's VGG-16, ResNet50V2, and DenseNet201 networks. We considered a set of Machine Learning (ML) algorithms to further validate our results, providing an ensemble model to detect COVID-19. Our experimental results show that our approach achieved 95% AUC using 128 relevant features from DenseNet201. Conversely, our ensemble model presented 91% AUC, indicating that deep learning-based radiomics could increase binary classification performance in a real scenario. In addition, we highlight that our approach can be adapted to create other DL-based radiomics tools. For reproducibility, we made our code available at https://github.com/usmarcv/CBMS-DL-based-radiomics. (AU)

Processo FAPESP: 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD)
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/07200-9 - Analisando dados complexos vinculados a COVID-19 para apoio à tomada de decisão e prognóstico
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/08982-3 - Segurança e privacidade em modelos de aprendizagem de máquina para imagens médicas contra ataques adversários
Beneficiário:Erikson Júlio de Aguiar
Modalidade de apoio: Bolsas no Brasil - Doutorado