Busca avançada
Ano de início
Entree


RELAXED ORIENTED IMAGE FORESTING TRANSFORM FOR SEEDED IMAGE SEGMENTATION

Texto completo
Autor(es):
Demario, Caio L. ; Miranda, Paulo A. V. ; IEEE
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP); v. N/A, p. 5-pg., 2019-01-01.
Resumo

In this work, we propose a hybrid method for seeded image segmentation, named Relaxed OIFT, which extends a method by Malmberg et al. to directed graphs, to properly incorporate the boundary polarity constraint. Relaxed OIFT, lies between the pure Oriented Image Foresting Transform (OIFT) at one end and the extension of Random Walks (RW) to directed graphs as proposed by Singaraju et al. Relaxed OIFT is evaluated in MR and CT medical images, producing more intuitively correct segmentation results than both OIFT and RW, and being easy to be extended to multi-dimensional images. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 16/21591-5 - Desenvolvimento de métodos robustos para delineamento de bordas em imagens utilizando grafos
Beneficiário:Fábio Augusto Menocci Cappabianco
Modalidade de apoio: Auxílio à Pesquisa - Regular