Busca avançada
Ano de início
Entree


Mechanical, thermal, rheological, and morphological characterization of polyolefin/activated attapulgite nanocomposites

Texto completo
Autor(es):
da Silva, Thais Ferreira ; Albers, Ana Paula Fonseca ; Quinteiro, Eduardo ; Sundararaj, Uttandaraman ; Passador, Fabio Roberto
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: Journal of Applied Polymer Science; v. 140, n. 39, p. 17-pg., 2023-07-21.
Resumo

Linear low-density polyethylene (LLDPE) and high-density polyethylene (HDPE) are polyolefins widely used in the packaging sector. Seeking to improve the mechanical properties with good cost-effectiveness, attapulgite (ATP) was chosen as a reinforcing filler for the polyolefins. ATP is a hydrated magnesium and aluminum clay mineral with a microfibrous morphology, and the purity of this filler depends on the deposit. ATP is associated with the presence of accessory minerals that need to be removed so as not to interfere with its final application. Thus, an ATP purification process was carried out through physical separation and chemical treatment with hydrogen peroxide (H2O2) and sulfuric acid (H2SO4). This purification process despite having a low yield and is very effective in reducing impurities and organic matter. This ATP was named ATPa. LLDPE/ATPa and HDPE/ATPa nanocomposites with the addition of 1, 3, and 5 wt% of ATPa were prepared by extrusion and hot pressing. The mechanical properties (Shore D hardness, tensile tests, and Izod impact strength), thermal properties (differential scanning calorimetry-DSC and thermogravimetric analysis-TGA), X-ray diffraction, rheological, and transmission scanning microscopy (TEM) were determined for these nanocomposites. The mechanical properties of the nanocomposites increased with the addition of ATPa. HDPE/ATPa nanocomposites showed more promise than LLDPE/ATPa nanocomposites. The addition of 5 wt% ATPa increased the tensile strength by 14% for the HDPE matrix and 5% for the LLDPE matrix and increased the elastic modulus by 46% for HDPE and 26% for LLDPE. (AU)

Processo FAPESP: 20/12501-8 - Desenvolvimento de embalagens antiestáticas e biodegradáveis baseadas em compósitos híbridos de poliésteres com adição de carbono vítreo e nanoplacas de grafeno
Beneficiário:Fabio Roberto Passador
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 16/19978-9 - Desenvolvimento de nanocompósitos de blendas de PA6/LLDPE e negro de fumo para embalagens antiestáticas para componentes eletrônicos
Beneficiário:Fabio Roberto Passador
Modalidade de apoio: Auxílio à Pesquisa - Regular