Busca avançada
Ano de início
Entree


DUA: A Domain-Unified Approach for Cross-Dataset 3D Human Pose Estimation

Texto completo
Autor(es):
Manesco, Joao Renato Ribeiro ; Berretti, Stefano ; Marana, Aparecido Nilceu
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 23, n. 17, p. 19-pg., 2023-09-01.
Resumo

Human pose estimation is an important Computer Vision problem, whose goal is to estimate the human body through joints. Currently, methods that employ deep learning techniques excel in the task of 2D human pose estimation. However, the use of 3D poses can bring more accurate and robust results. Since 3D pose labels can only be acquired in restricted scenarios, fully convolutional methods tend to perform poorly on the task. One strategy to solve this problem is to use 2D pose estimators, to estimate 3D poses in two steps using 2D pose inputs. Due to database acquisition constraints, the performance improvement of this strategy can only be observed in controlled environments, therefore domain adaptation techniques can be used to increase the generalization capability of the system by inserting information from synthetic domains. In this work, we propose a novel method called Domain Unified approach, aimed at solving pose misalignment problems on a cross-dataset scenario, through a combination of three modules on top of the pose estimator: pose converter, uncertainty estimator, and domain classifier. Our method led to a 44.1mm (29.24%) error reduction, when training with the SURREAL synthetic dataset and evaluating with Human3.6M over a no-adaption scenario, achieving state-of-the-art performance. (AU)

Processo FAPESP: 22/07055-4 - Estimação de poses humanas tridimensionais baseada em imagens monoculares auxiliada por adaptação de domínio
Beneficiário:João Renato Ribeiro Manesco
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Mestrado
Processo FAPESP: 21/02028-6 - Estimação de poses humanas tridimensionais baseada em imagens monoculares auxiliada por adaptação de domínio
Beneficiário:João Renato Ribeiro Manesco
Modalidade de apoio: Bolsas no Brasil - Mestrado