Busca avançada
Ano de início
Entree


A Literature Survey on AI-Aided Beamforming and Beam Management for 5G and 6G Systems

Texto completo
Autor(es):
Brilhante, Davi da Silva ; Manjarres, Joanna Carolina ; Moreira, Rodrigo ; Veiga, Lucas de Oliveira ; de Rezende, Jose F. ; Mueller, Francisco ; Klautau, Aldebaro ; Mendes, Luciano Leonel ; de Figueiredo, Felipe A. P.
Número total de Autores: 9
Tipo de documento: Artigo Científico
Fonte: SENSORS; v. 23, n. 9, p. 61-pg., 2023-04-28.
Resumo

Modern wireless communication systems rely heavily on multiple antennas and their corresponding signal processing to achieve optimal performance. As 5G and 6G networks emerge, beamforming and beam management become increasingly complex due to factors such as user mobility, a higher number of antennas, and the adoption of elevated frequencies. Artificial intelligence, specifically machine learning, offers a valuable solution to mitigate this complexity and minimize the overhead associated with beam management and selection, all while maintaining system performance. Despite growing interest in AI-assisted beamforming, beam management, and selection, a comprehensive collection of datasets and benchmarks remains scarce. Furthermore, identifying the most-suitable algorithm for a given scenario remains an open question. This article aimed to provide an exhaustive survey of the subject, highlighting unresolved issues and potential directions for future developments. The discussion encompasses the architectural and signal processing aspects of contemporary beamforming, beam management, and selection. In addition, the article examines various communication challenges and their respective solutions, considering approaches such as centralized/decentralized, supervised/unsupervised, semi-supervised, active, federated, and reinforcement learning. (AU)

Processo FAPESP: 18/23097-3 - SFI2: fatiamento de infraestruturas de internet do futuro
Beneficiário:Tereza Cristina Melo de Brito Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 21/06946-0 - Comunicações auxiliadas por superfícies inteligentes e reconfiguráveis para 6G e além
Beneficiário:Rausley Adriano Amaral de Souza
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 22/03457-0 - SAMURAI - Smart 5G Core And MUltiRAn Integration: núcleo 5G inteligente e integração de múltiplas redes de acesso
Beneficiário:Masoud Khazaee
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Processo FAPESP: 20/05152-7 - PROFISSA: internet do futuro programável para arquiteturas e softwares seguros
Beneficiário:Lisandro Zambenedetti Granville
Modalidade de apoio: Auxílio à Pesquisa - Temático