Busca avançada
Ano de início
Entree


How to proper initialize Gaussian Mixture Models with Optimum-Path Forest

Texto completo
Autor(es):
Martins, Guilherme Brandao ; Papa, Joao Paulo ; DeCarvalho, BM ; Goncalves, LMG
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022); v. N/A, p. 6-pg., 2022-01-01.
Resumo

In this paper, we proposed a fast and scalable unsupervised Optimum-Path Forest for improving the initialization of Gaussian mixture models. Taking advantage of Optimum-Path Forest attributes such as on-the-fly number of clusters estimation and its intrinsic non-parametric nature, we exploited the k-Approximate Nearest Neighbors graph to build its adjacency relation, enabling it not only to initialize the Expectation-Maximization algorithm but to be employed for clustering on large datasets as well. From experiments conducted on eight datasets, the results indicated the proposed approach is able to encode Gaussian parameters more naturally and intuitively compared to other clustering algorithms such as k-means. Furthermore, the proposed approach has shown great scalability, making it a viable alternative to traditional Optimum-Path Forest clustering. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia