Busca avançada
Ano de início
Entree


Coefficient modules and Ratliff-Rush closures

Texto completo
Autor(es):
Perez, Victor H. Jorge ; Ferrari, Marcela D.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: COMMUNICATIONS IN ALGEBRA; v. N/A, p. 13-pg., 2023-03-08.
Resumo

Let (R, m) be a d-dimensional Noetherian local ring, M be an R-submodule of the free module F = R-p. In this work, in analogy to the papers of Liu in [16] and of Ratliff and Rush in [20], if we consider R a formally equidimensional ring and the R-module F/M having finite length, we prove the existence of a unique chain of modules, M subset of M-{d+p-1}(F) subset of middotmiddotmiddot subset of M-{1}(F) subset of M-{0}(F) subset of M such that i-the Buchsbaum-Rim coefficients of M and M-{k}(F) are equal for i = 0, ..., k, between M and its integral closure M. This modules will be called Coefficient Modules of M. We also give a colon structure description of these coefficient modules, and, in addition, as consequence of this results, we obtain certain properties of the Ratliff-Rush module of M. (AU)

Processo FAPESP: 10/11668-4 - Ideais e módulos coeficientes/Número de Milnor em característica zero para aplicações
Beneficiário:Marcela Duarte da Silva
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado