Busca avançada
Ano de início
Entree


Imputation of Missing Parts in UAV Orthomosaics Using PlanetScope and Sentinel-2 Data: A Case Study in a Grass-Dominated Area

Texto completo
Autor(es):
Pereira, Francisco R. da S. ; Dos Reis, Aliny A. ; Freitas, Rodrigo G. ; Oliveira, Stanley R. de M. ; do Amaral, Lucas R. ; Figueiredo, Gleyce K. D. A. ; Antunes, Joao F. G. ; Lamparelli, Rubens A. C. ; Moro, Edemar ; Magalhaes, Paulo S. G.
Número total de Autores: 10
Tipo de documento: Artigo Científico
Fonte: ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION; v. 12, n. 2, p. 15-pg., 2023-02-01.
Resumo

The recent advances in unmanned aerial vehicle (UAV)-based remote sensing systems have broadened the remote sensing applications for agriculture. Despite the great possibilities of using UAVs to monitor agricultural fields, specific problems related to missing parts in UAV orthomosaics due to drone flight restrictions are common in agricultural monitoring, especially in large areas. In this study, we propose a methodological framework to impute missing parts of UAV orthomosaics using PlanetScope (PS) and Sentinel-2 (S2) data and the random forest (RF) algorithm of an integrated crop-livestock system (ICLS) covered by grass at the time. We validated the proposed framework by simulating and imputing artificial missing parts in a UAV orthomosaic and then comparing the original data with the model predictions. Spectral bands and the normalized difference vegetation index (NDVI) derived from PS, as well as S2 images (separately and combined), were used as predictor variables of the UAV spectral bands and NDVI in developing the RF-based imputation models. The proposed framework produces highly accurate results (RMSE = 6.77-17.33%) with a computationally efficient and robust machine-learning algorithm that leverages the wealth of empirical information present in optical satellite imagery (PS and S2) to impute up to 50% of missing parts in a UAV orthomosaic. (AU)

Processo FAPESP: 17/50205-9 - Monitoramento de sistemas integrados lavoura-pecuária por meio de sensoriamento remoto e agricultura de precisão para uma produção mais sustentável - rumo à agricultura de baixo carbono
Beneficiário:Paulo Sergio Graziano Magalhães
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/24985-0 - Metodologia para o mapeamento e monitoramento de diferentes sistemas de manejo de pastagens para Pecuária e sistemas mistos de Agricultura-Pecuária com sensoriamento remoto
Beneficiário:Aliny Aparecida dos Reis
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado