Busca avançada
Ano de início
Entree


Multilinear and Integer Programming for Markov Decision Processes with Imprecise Probabilities

Autor(es):
Shirota Filho, Ricardo ; Cozman, Fabio Gagliardi ; Trevizan, Felipe Werndl ; de Campos, Cassio Polpo ; de Barros, Leliane Nunes ; DeCooman, G ; Vejnarova, J ; Zaffalon, M
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: ISIPTA 07-PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITY:THEORIES AND APPLICATIONS; v. N/A, p. 3-pg., 2007-01-01.
Resumo

Markov Decision Processes (MDPs) are extensively used to encode sequences of decisions with probabilistic effects. Markov Decision Processes with Imprecise Probabilities (MDPIPs) encode sequences of decisions whose effects are modeled using sets of probability distributions. In this paper we examine the computation of Gamma-maximin policies for MDPIPs using multilinear and integer programming. We discuss the application of our algorithms to "factored" models and to a recent proposal, Markov Decision Processes with Set-valued Transitions (N4DPSTs), that unifies the fields of probabilistic and "nondeterministic" planning in artificial intelligence research. (AU)

Processo FAPESP: 04/09568-0 - Algoritmos para inferencia e aprendizado para logica probabilistica com relacoes de independencia.
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 05/58090-9 - Algoritmos para processos de decisão markovianos relacionais com probabilidade imprecisas
Beneficiário:Ricardo Shirota Filho
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto