Texto completo | |
Autor(es): |
Garcia-Ferreira, S.
;
Tomita, A. H.
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Topology and its Applications; v. 192, p. 7-pg., 2015-09-01. |
Resumo | |
A space X is called strongly pseudocompact if for each sequence (U-n)(n is an element of N) of pairwise disjoint nonempty open subsets of X there is a sequence (x(n))(n is an element of N) of points in X such that cl(X)({x(n) : n is an element of N}) \ (U-n is an element of N U-n) not equal 0 and x(n) is an element of U-n, for each n is an element of N. It is evident that every countably compact space is strongly pseudocompact and every strongly pseudocompact space is pseudocompact. In this paper, we construct a pseudocompact group that is not strongly pseudocompact answering two questions posed in [13]. (C) 2015 Elsevier B.V. All rights reserved. (AU) | |
Processo FAPESP: | 12/01490-9 - Construções de topologias: grupos topológicos enumeravelmente compactos, hiperespaços e seleções e outros |
Beneficiário: | Artur Hideyuki Tomita |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |
Processo FAPESP: | 13/06961-2 - Propriedades fortemente pseudocompactas e grupo topológico |
Beneficiário: | Artur Hideyuki Tomita |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |