Busca avançada
Ano de início
Entree


A pseudocompact group which is not strongly pseudocompact

Texto completo
Autor(es):
Garcia-Ferreira, S. ; Tomita, A. H.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Topology and its Applications; v. 192, p. 7-pg., 2015-09-01.
Resumo

A space X is called strongly pseudocompact if for each sequence (U-n)(n is an element of N) of pairwise disjoint nonempty open subsets of X there is a sequence (x(n))(n is an element of N) of points in X such that cl(X)({x(n) : n is an element of N}) \ (U-n is an element of N U-n) not equal 0 and x(n) is an element of U-n, for each n is an element of N. It is evident that every countably compact space is strongly pseudocompact and every strongly pseudocompact space is pseudocompact. In this paper, we construct a pseudocompact group that is not strongly pseudocompact answering two questions posed in [13]. (C) 2015 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 12/01490-9 - Construções de topologias: grupos topológicos enumeravelmente compactos, hiperespaços e seleções e outros
Beneficiário:Artur Hideyuki Tomita
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/06961-2 - Propriedades fortemente pseudocompactas e grupo topológico
Beneficiário:Artur Hideyuki Tomita
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional