Busca avançada
Ano de início
Entree


A new multi-objective evolutionary algorithm for service restoration: Non-dominated Sorting Genetic Algorithm-II in Subpopulation Tables

Autor(es):
Marques, Leandro Tolomeu ; Augusto London, Joao Bosco, Jr. ; Marcal Camillo, Marcos Henrique ; de Lima, Telma Woerle ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2017 IEEE MANCHESTER POWERTECH; v. N/A, p. 6-pg., 2017-01-01.
Resumo

Distribution system (DS) service restoration is a very complex multi-objective and multi-constraint optimization problem, which requires high-quality Pareto fronts for helping the DS operators' work. This paper proposes a multi-objective evolutionary algorithm (MOEA) that combines the advantages of MOEAs in Tables with the properties of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to recover Pareto fronts of the service problem. Its main differentials are its ability of recovering high-quality Pareto fronts, even in large-scale DSs, and of prioritizing switching operations in Remotely Controlled Switches (RCSs), independently of amount of RCSs. In opposite of Manually Controlled Switches (MCSs), RCS can be faster and cheapest operated from operating center. Several tests were carried out to validate and to compare the proposed MOEA to three MOEAs published in literature. Four metrics were used for assessing the quality of Pareto fronts generated and a Welch's t hypothesis test enabled the comparison of MOEAs' performance. Test results indicate the proposed MOEA outperforms those three MOEAs published in literature. (AU)

Processo FAPESP: 13/13236-2 - Metodologia para Determinação de Planos de Restabelecimento de Energia em Sistemas de Distribuição de Grande Porte Considerando Aspectos Práticos do Problema
Beneficiário:Leandro Tolomeu Marques
Modalidade de apoio: Bolsas no Brasil - Doutorado