Busca avançada
Ano de início
Entree


SILVER STANDARD MASKS FOR DATA AUGMENTATION APPLIED TO DEEP-LEARNING-BASED SKULL-STRIPPING

Texto completo
Autor(es):
Lucena, Oeslle ; Souza, Roberto ; Rittner, Leticia ; Frayne, Richard ; Lotufo, Roberto ; IEEE
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018); v. N/A, p. 4-pg., 2018-01-01.
Resumo

The bottleneck of convolutional neural networks (CNN) for medical imaging is the large number of annotated data required for training. Manual segmentation is considered to be the "gold-standard". However, medical imaging datasets with expert manual segmentation are scarce as this step is time-consuming and expensive. We propose in this work the use of what we refer to as silver standard masks for data augmentation in deep-learning-based skull-stripping also known as brain extraction. We generated the silver standard masks using the consensus algorithm Simultaneous Truth and Performance Level Estimation (STAPLE). We evaluated CNN models generated by the silver and gold standard masks. Then, we validated the silver standard masks for CNNs training in one dataset, and showed its generalization to two other datasets. Our results indicated that models generated with silver standard masks are comparable to models generated with gold standard masks and have better generalizability. Moreover, our results also indicate that silver standard masks could be used to augment the input dataset at training stage, reducing the need for manual segmentation at this step. (AU)

Processo FAPESP: 16/18332-8 - Segmentação de estruturas cerebrais de imagens de ressonância magnética utilizando deep learning
Beneficiário:Oeslle Alexandre Soares de Lucena
Modalidade de apoio: Bolsas no Brasil - Mestrado