Busca avançada
Ano de início
Entree


BreastNet: Breast Cancer Categorization Using Convolutional Neural Networks

Texto completo
Autor(es):
Santos, Claudio F. G. ; Afonso, Luis C. S. ; Pereira, Clayton R. ; Papa, Joao P. ; DeHerrera, AGS ; Gonzalez, AR ; Santosh, KC ; Temesgen, Z ; Kane, B ; Soda, P
Número total de Autores: 10
Tipo de documento: Artigo Científico
Fonte: 2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020); v. N/A, p. 6-pg., 2020-01-01.
Resumo

Breast cancer is usually classified as either benign or malignant, where the former is not considered hazardous to health. Nonetheless, the benign tumors must be periodically monitored to control their activity and to prevent them from becoming malignant eventually. Several automated techniques have been proposed to aid the diagnosis by indicating potential tumor locations or by providing a broader insight. Although benign and malignant tumors are divided into four categories each, most of the works cope with their classification as just benign and malignant. This work addresses the problem of providing a more detailed classification of the tumors by proposing a deep-based architecture able to distinguish between eight types of tumors (i.e., four benign and four malignant). The proposed approach relies on the fusion of traditional convolution kernels with dilated convolutions before pooling, which can learn better spatial information, thus providing better feature detection prior to classification. Experimental results showed that the proposed approach outperformed the techniques compared in this work. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia