Variedades invariantes e conjuntos periódicos limite de folheações descontínuas
Teoria topológica, geométrica e ergódica dos sistemas dinâmicos
Sistemas dinâmicos com simetrias e equações diferenciais implícitas
Texto completo | |
Autor(es): |
Cardin, Pedro Toniol
;
Teixeira, Marco Antonio
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Dynamics and Differential Equations; v. 34, n. 2, p. 13-pg., 2020-06-08. |
Resumo | |
In this paper we focus on a class of symmetric vector fields in the context of singularly perturbed fast-slow dynamical systems. Our main question is to know how symmetry properties of a dynamical system are affected by singular perturbations. In addition, our approach uses tools in geometric singular perturbation theory [8], which address the persistence of normally hyperbolic compact manifolds. We analyse the persistence of such symmetry properties when the singular perturbation parameter e is positive and small enough, and study the existing relations between symmetries of the singularly perturbed system and symmetries of the limiting systems, which are obtained from the limit epsilon -> 0 in the fast and slow time scales. This approach is applied to a number of examples. (AU) | |
Processo FAPESP: | 19/00976-4 - Sistemas dinâmicos com múltiplas escalas de tempo |
Beneficiário: | Pedro Toniol Cardin |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |