Problema limite de fronteira livre em espaços de Orlicz-Sobolev
Estudos de estruturas de dados eficientes para abordar o problema de otimização U-...
Teoria de regularidade para classes de equações elípticas degeneradas locais e não...
Texto completo | |
Autor(es): |
Santos, Jefferson Abrantes
;
Soares, Sergio H. Monari
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS; v. 59, n. 6, p. 23-pg., 2020-10-08. |
Resumo | |
An optimization problem with volume constraint involving the Phi-Laplacian in Orlicz-Sobolev spaces is considered for the case where Phi does not satisfy the natural condition introduced by Lieberman. A minimizer u(Phi) having non-degeneracy at the free boundary is proved to exist and some important consequences are established like the Lipschitz regularity of uF along the free boundary, that the set {u(Phi) > 0} has uniform positive density, that the free boundary is porous with porosity delta > 0 and has finite (N - delta)-Hausdorff measure. Under a geometric compatibility condition set up by Rossi and Teixeira, it is established the behavior of a l-quasilinear optimal design problem with volume constraint for l small. As l -> 0(+), we obtain a limiting free boundary problem driven by the infinity-Laplacian operator and find the optimal shape for the limiting problem. The proof is based on a penalization technique and a truncated minimization problem in terms of the Taylor polynomial of Phi. (AU) | |
Processo FAPESP: | 18/11664-0 - Problemas quasilineares em espaços de Orlicz-Sobolev |
Beneficiário: | Sergio Henrique Monari Soares |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Brasil |
Processo FAPESP: | 16/16745-3 - Problema limite de fronteira livre em espaços de Orlicz-Sobolev |
Beneficiário: | Sergio Henrique Monari Soares |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Brasil |