Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

COMBINATORIAL DUAL BOUNDS ON THE LEAST COST INFLUENCE PROBLEM

Texto completo
Autor(es):
Renato Silva de Melo [1] ; André Luís Vignatti [2] ; Flávio Keidi Miyazawa [3] ; Matheus Jun Ota [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Federal University of Paraná. Department of Computer Science - Brasil
[2] Federal University of Paraná. Department of Computer Science - Brasil
[3] University of Campinas. Institute of Computing - Brasil
[4] University of Campinas. Institute of Computing - Brasil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Pesquisa Operacional; v. 43, 2023-11-10.
Resumo

ABSTRACT The Least Cost Influence Problem is a combinatorial optimization problem that appears in the context of social networks. The objective is to give incentives to individuals of a network, such that some information spreads to a desired fraction of the network at minimum cost. We introduce a problem-dependent algorithm in a branch-and-bound scheme to compute a dual bound for this problem. The idea is to exploit the connectivity properties of sub-graphs of the input graph associated with each node of the branch-and-bound tree and use it to increase each sub-problem’s lower bound. Our algorithm works well and finds a lower bound tighter than the LP-relaxation in linear time in the size of the graph. Computational experiments with synthetic graphs and real-world social networks show improvements in using our proposed bounds. The improvements are gains in running time or gap reduction for exact solutions to the problem. (AU)

Processo FAPESP: 15/11937-9 - Investigação de problemas difíceis do ponto de vista algorítmico e estrutural
Beneficiário:Flávio Keidi Miyazawa
Modalidade de apoio: Auxílio à Pesquisa - Temático