Busca avançada
Ano de início
Entree


Day-Ahead Photovoltaic Power Forecasting Using Deep Learning with an Autoencoder-Based Correction Strategy

Texto completo
Autor(es):
Cortez, Juan Carlos ; Lopez, Juan Camilo ; Ullon, Hernan R. ; Giesbrecht, Mateus ; Rider, Marcos J.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS; v. 35, n. 4, p. 15-pg., 2024-06-07.
Resumo

Accurate forecasting is crucial for successfully integrating photovoltaic (PV) power plants into electrical grids and microgrids. Accordingly, this work presents a hybrid methodology for day-ahead PV power forecasting (PPF). It begins by examining three deep learning (DL) techniques, long short-term memory (LSTM), gated recurrent unit (GRU), and multilayer perceptron (MLP), as potential forecasting models. To find a robust forecasting model, feature selection is employed to select the most relevant input features, and additionally, hyperparameter optimization is performed using the Chu-Beasley genetic algorithm to automatically set the hyperparameters for each technique. An initial day-ahead PPF is computed recursively after selecting the optimal forecasting model. Subsequently, this initial forecast is refined using a long-short-term memory autoencoder (LSTM-AE) that corrects the initial PPF. To further enhance the interpretability of the final forecast, the k-means algorithm, incorporating a soft-dynamic time warping (DTW) metric, is utilized. The efficacy of the methodology is validated using real data from a solar farm at the State University of Campinas (UNICAMP) in Brazil. Empirical results demonstrate that the proposed methodology improves the forecast accuracy by more than 3.5% when LSTM-AE is applied for correction compared to state-of-the-art models. (AU)

Processo FAPESP: 21/11380-5 - CPTEn - Centro Paulista de Estudos da Transição Energética
Beneficiário:Luiz Carlos Pereira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Centros de Ciência para o Desenvolvimento
Processo FAPESP: 19/01906-0 - Restauração ótima distribuída de sistema de distribuição de energia elétrica utilizando o algoritmo da direção alternada de multiplicadores de Lagrange
Beneficiário:Juan Camilo Lopez Amezquita
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 21/11310-7 - Aplicação de técnicas heurísticas para o tratamento de variáveis binárias no problema de restauração ótima
Beneficiário:Juan Camilo Lopez Amezquita
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado