| Texto completo | |
| Autor(es): |
Tetila, Everton Castelao
;
da Silveira, Fabio Amaral Godoy
;
Costa, Anderson Bessa da
;
Amorim, Willian Paraguassu
;
Astolfi, Gilberto
;
Pistori, Hemerson
;
Barbedo, Jayme Garcia Arnal
Número total de Autores: 7
|
| Tipo de documento: | Artigo Científico |
| Fonte: | SMART AGRICULTURAL TECHNOLOGY; v. 7, p. 10-pg., 2024-02-05. |
| Resumo | |
In this work, we evaluated the You Only Look Once (YOLO) architecture for real-time detection of soybean pests. We collected images of the soybean plantation in different days, locations and weather conditions, between the phenological stages R1 to R6, which have a high occurrence of insect pests in soybean fields. We employed a 5 -fold cross -validation paired with four metrics to evaluate the classification performance and three metrics to evaluate the detection performance. Experimental results showed that YOLOv3 architecture trained with a batch size of 32 leads to higher classification and detection rates compared to batch sizes of 4 and 16. The results indicate that the evaluated architecture can support specialists and farmers in monitoring the need for pest control action in soybean fields. (AU) | |
| Processo FAPESP: | 23/03870-8 - Monitoramento de rebanhos usando imagens de drones. |
| Beneficiário: | Everton Castelão Tetila |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
| Processo FAPESP: | 22/09319-9 - Centro de Ciência para o Desenvolvimento em Agricultura Digital - CCD-AD/SemeAr |
| Beneficiário: | Silvia Maria Fonseca Silveira Massruhá |
| Modalidade de apoio: | Auxílio à Pesquisa - Centros de Ciência para o Desenvolvimento |