Busca avançada
Ano de início
Entree


LargeNetVis: Visual Exploration of Large Temporal Networks Based on Community Taxonomies

Texto completo
Autor(es):
Linhares, Claudio D. G. ; Ponciano, Jean R. ; Pedro, Diogenes S. ; Rocha, Luis E. C. ; Traina, Agma J. M. ; Poco, Jorge
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS; v. 29, n. 1, p. 11-pg., 2023-01-01.
Resumo

Temporal (or time-evolving) networks are commonly used to model complex systems and the evolution of their components throughout time. Although these networks can be analyzed by different means, visual analytics stands out as an effective way for a pre-analysis before doing quantitative/statistical analyses to identify patterns, anomalies, and other behaviors in the data, thus leading to new insights and better decision-making. However, the large number of nodes, edges, and/or timestamps in many real-world networks may lead to polluted layouts that make the analysis inefficient or even infeasible. In this paper, we propose LargeNetVis, a web-based visual analytics system designed to assist in analyzing small and large temporal networks. It successfully achieves this goal by leveraging three taxonomies focused on network communities to guide the visual exploration process. The system is composed of four interactive visual components: the first (Taxonomy Matrix) presents a summary of the network characteristics, the second (Global View) gives an overview of the network evolution, the third (a node-link diagram) enables community- and node-level structural analysis, and the fourth (a Temporal Activity Map - TAM) shows the community- and node-level activity under a temporal perspective. We demonstrate the usefulness and effectiveness of LargeNetVis through two usage scenarios and a user study with 14 participants. (AU)

Processo FAPESP: 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD)
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/10049-0 - Redes complexas e recuperação de imagens por conteúdo apoiadas por características de atenção visual seletiva
Beneficiário:Cláudio Douglas Gouveia Linhares
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 20/07200-9 - Analisando dados complexos vinculados a COVID-19 para apoio à tomada de decisão e prognóstico
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Regular