Busca avançada
Ano de início
Entree


Assessing Good, Bad and Ugly Arguments Generated by ChatGPT: a New Dataset, its Methodology and Associated Tasks

Texto completo
Autor(es):
Nascimento Rocha, Victor Hugo ; Silveira, Igor Cataneo ; Pirozelli, Paulo ; Maua, Denis Deratani ; Cozman, Fabio Gagliardi
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I; v. 14115, p. 13-pg., 2023-01-01.
Resumo

The recent success of Large Language Models (LLMs) has sparked concerns about their potential to spread misinformation. As a result, there is a pressing need for tools to identify "fake arguments" generated by such models. To create these tools, examples of texts generated by LLMs are needed. This paper introduces a methodology to obtain good, bad and ugly arguments from argumentative essays produced by ChatGPT, OpenAI's LLM. We then describe a novel dataset containing a set of diverse arguments, ArGPT. We assess the effectiveness of our dataset and establish baselines for several argumentation-related tasks. Finally, we show that the artificially generated data relates well to human argumentation and thus is useful as a tool to train and test systems for the defined tasks. (AU)

Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 22/02937-9 - Indução de programas lógico-probabilístico-neurais
Beneficiário:Denis Deratani Mauá
Modalidade de apoio: Auxílio à Pesquisa - Projeto Inicial
Processo FAPESP: 19/26762-0 - Estruturas Lógicas em Argumentação
Beneficiário:Paulo Pirozelli Almeida Silva
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado