Busca avançada
Ano de início
Entree


Color-texture classification based on spatio-spectral complex network representations

Texto completo
Autor(es):
Ribas, Lucas C. ; Scabini, Leonardo F. S. ; Condori, Rayner H. M. ; Bruno, Odemir M.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 635, p. 15-pg., 2024-01-19.
Resumo

This paper proposes a method for color -texture analysis by learning spatio-spectral representations from a complex network framework using the Randomized Neural Network (RNN). We model the color -texture image as a directed complex network based on the Spatio-Spectral Network (SSN) model, which considers within -channel connections in its topology to represent the spatial characteristics and spectral patterns covered by between -channel links. The insight behind the method is that complex topological features from the SSN can be embedded by a simple and fast neural network model for color -texture classification. Thus, we investigate how to effectively use the RNN to analyze and represent the spatial and spectral patterns from the SSN. We use the SSN vertex measurements to train the RNN to predict the dynamics of the complex network evolution and adopt the learned weights of the output layer as descriptors. Classification experiments in four datasets show the proposed method produces a very discriminative representation. The results demonstrate that our method obtains accuracies higher than several literature techniques, including deep convolutional neural networks. The proposed method also showed to be promising for plant species recognition, achieving high accuracies in this task. This performance indicates that the proposed approach can be employed successfully in computer vision applications. (AU)

Processo FAPESP: 23/04583-2 - Reconhecimento de padrões em imagens baseado em redes neurais artificiais e sistemas complexos: da extração de descritores manuais ao aprendizado automático
Beneficiário:Lucas Correia Ribas
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 19/07811-0 - Redes neurais artificiais e redes complexas: um estudo integrativo de propriedades topológicas e reconhecimento de padrões
Beneficiário:Leonardo Felipe dos Santos Scabini
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 21/09163-6 - Ciência das redes para otimização de redes neurais artificiais em visão computacional
Beneficiário:Leonardo Felipe dos Santos Scabini
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 18/22214-6 - Rumo à convergência de tecnologias: de sensores e biossensores à visualização de informação e aprendizado de máquina para análise de dados em diagnóstico clínico
Beneficiário:Osvaldo Novais de Oliveira Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático