Busca avançada
Ano de início
Entree


Sharp Global Well-Posedness for the Cubic Nonlinear Schrödinger Equation with Third Order Dispersion

Texto completo
Autor(es):
Carvajal, X. ; Panthee, M.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS; v. 30, n. 2, p. 23-pg., 2024-04-01.
Resumo

We consider the initial value problem (IVP) associated to the cubic nonlinear Schr & ouml;dinger equation with third-order dispersion partial derivative(t)u + i alpha partial derivative(2)(x)u - partial derivative(3)(x)u + i beta|u|(2)u = 0, x, t is an element of R, for given data in the Sobolev space Hs(R). This IVP is known to be locally well-posed for given data with Sobolev regularity s > -1/4 and globally well-posed for s >= 0 (Carvajal in Electron J Differ Equ 2004:1-10, 2004). For given data in H-s(R), 0 > s > -1/4 no global well-posedness result is known. In this work, we derive an almost conserved quantity for such data and obtain a sharp global well-posedness result. Our result answers the question left open in (Carvajal in Electron J Differ Equ 2004:1-10, 2004). (AU)

Processo FAPESP: 23/06416-6 - Fenômenos não lineares e dispersão
Beneficiário:Mahendra Prasad Panthee
Modalidade de apoio: Auxílio à Pesquisa - Regular