Busca avançada
Ano de início
Entree


Role of Jahn-Teller distortion in the relative stability between the black and yellow phases of transition metal doped CsSnI3 perovskites

Texto completo
Autor(es):
Chagas, Lucas G. ; Da Silva, Juarez L. F. ; Lima, Matheus P.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW B; v. 109, n. 1, p. 11-pg., 2024-01-26.
Resumo

Perovskite-based materials (ABX3) show promise for photovoltaic applications; however, commercial use still encounters challenges, specifically Pb toxicity and structural instabilities of the active phases. A potential leadfree compound is CsSnI3; nonetheless, the photoinactive yellow phase is energetically more favorable than the photoactive black phase. An undesired black -> yellow phase transition implies structural instabilities, possibly explained by the Goldschmidt tolerance factor of 0.84. In this study, we employ theoretical calculations to investigate the impact of substitutional bivalent doping in the B sites of CsSnI3 with 3d transition metals (TM) on tuning the relative energetic stability between the black and yellow phases. Our calculations are based on density functional theory, incorporating on-site Hubbard corrections for the T M 3d states. We observe an inversion of the relative stability between the yellow and black phases for dopings with Co, Cu, and Zn. We attribute the interphase relative energy to Jahn-Teller distortions at the doped octahedra, as the black and yellow phases exhibit distinct octahedral interconnections. For instance, the black phase has corner-shared octahedra, resulting in lower elastic costs for accommodating geometric distortions compared to the edge-shared octahedra in the yellow phase. The presented results highlight the influence of symmetry breaks on the stability of perovskite materials and have implications for other perovskite compositions. (AU)

Processo FAPESP: 18/21401-7 - EMU concedido no processo 2017/11631-2: cluster computacional de alto desempenho - ENIAC
Beneficiário:Juarez Lopes Ferreira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Programa Equipamentos Multiusuários
Processo FAPESP: 17/11631-2 - CINE: desenvolvimento computacional de materiais utilizando simulações atomísticas, meso-escala, multi-física e inteligência artificial para aplicações energéticas
Beneficiário:Juarez Lopes Ferreira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia