Busca avançada
Ano de início
Entree


Meta-learners for few-shot weakly-supervised medical image segmentation

Texto completo
Autor(es):
Oliveira, Hugo ; Gama, Pedro H. T. ; Bloch, Isabelle ; Cesar Jr, Roberto Marcondes
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: PATTERN RECOGNITION; v. 153, p. 13-pg., 2024-04-24.
Resumo

Most uses of Meta -Learning in visual recognition are very often applied to image classification, with a relative lack of work in other tasks such as segmentation and detection. We propose a new generic Meta -Learning framework for few -shot weakly supervised segmentation in medical imaging domains. The proposed approach includes a meta -training phase that uses a meta-dataset. It is deployed on an out -of -distribution few -shot target task, where a single highly generalizable model, trained via a selective supervised loss function, is used as a predictor. The model can be trained in several distinct ways, such as second -order optimization, metric learning, and late fusion. Some relevant improvements of existing methods that are part of the proposed approach are presented. We conduct a comparative analysis of meta -learners from distinct paradigms adapted to few -shot image segmentation in different sparsely annotated radiological tasks. The imaging modalities include 2D chest, mammographic, and dental X-rays, as well as 2D slices of volumetric tomography and resonance images. Our experiments consider in total 9 meta -learners, 4 backbones, and multiple target organ segmentation tasks. We explore small -data scenarios in radiology with varying weak annotation styles and densities. Our analysis shows that metric -based meta -learning approaches achieve better segmentation results in tasks with smaller domain shifts compared to the meta -training datasets, while some gradient- and fusionbased meta -learners are more generalizable to larger domain shifts. Guidelines learned from the comparative performance assessment of the analyzed methods are summarized to support those readers interested in the field. (AU)

Processo FAPESP: 20/06744-5 - Deep learning e representações intermediárias para análise de imagens pediátricas
Beneficiário:Hugo Neves de Oliveira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 15/22308-2 - Representações intermediárias em Ciência Computacional para descoberta de conhecimento
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 22/15304-4 - Aprendizado de representações ricas em contexto para visão computacional
Beneficiário:Nina Sumiko Tomita Hirata
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/50236-1 - Análise espaço-temporal de imagens de ressonância magnética
Beneficiário:Roberto Marcondes Cesar Junior
Modalidade de apoio: Auxílio à Pesquisa - Regular