Texto completo | |
Autor(es): |
Hernandez, Lorena Soriano
;
Siciliano, Gaetano
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Electronic Journal of Differential Equations; v. 2023, n. 66, p. 18-pg., 2023-10-13. |
Resumo | |
We study the existence and multiplicity of solutions for the Schrodinger-Bopp-Podolsky system -Delta u + phi u = omega u in Omega alpha 2 Delta 2 phi - Delta phi = u(2) in Omega u = phi = Delta phi = 0 on partial derivative Omega integral(Omega)u(2) dx = 1 where Omega is an open bounded and smooth domain in R-3 , a > 0 is the Bopp-Podolsky parameter. The unknowns are u, phi : Omega -> R and omega is an element of R. By using variational methods we show that for any a > 0 there are infinitely many solutions with diverging energy and divergent in norm. We show that ground states solutions converge to a ground state solution of the related classical Schrodinger-Poisson system, as a -> 0. (AU) | |
Processo FAPESP: | 22/16407-1 - TESEd: Temático em Equações e Sistemas de Equações diferenciais |
Beneficiário: | Ederson Moreira dos Santos |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |