Busca avançada
Ano de início
Entree


A benchmark generator for scenario-based discrete optimization

Texto completo
Autor(es):
de Moraes, Matheus Bernardelli ; Coelho, Guilherme Palermo
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS; v. 88, n. 1, p. 30-pg., 2024-02-06.
Resumo

Multi-objective evolutionary algorithms (MOEAs) are a practical tool to solve non-linear problems with multiple objective functions. However, when applied to expensive black-box scenario-based optimization problems, MOEA's performance becomes constrained due to computational or time limitations. Scenario-based optimization refers to problems that are subject to uncertainty, where each solution is evaluated over an ensemble of scenarios to reduce risks. A primary reason for MOEA's failure is that algorithm development is challenging in these cases as many of these problems are black-box, high-dimensional, discrete, and computationally expensive. For this reason, this paper proposes a benchmark generator to create fast-to-compute scenario-based discrete test problems with different degrees of complexity. Our framework uses the structure of the Multi-Objective Knapsack Problem to create test problems that simulate characteristics of expensive scenario-based discrete problems. To validate our proposition, we tested four state-of-the-art MOEAs in 30 test instances generated with our framework, and the empirical results demonstrate that the suggested benchmark generator can analyze the ability of MOEAs in tackling expensive scenario-based discrete optimization problems. (AU)

Processo FAPESP: 17/15736-3 - Centro de Pesquisa em Engenharia em Reservatórios e Gerenciamento de Produção de Petróleo
Beneficiário:Denis José Schiozer
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia