Busca avançada
Ano de início
Entree


Propagation of Chaos and Phase Transition in a Stochastic Model for a Social Network

Texto completo
Autor(es):
Loecherbach, Eva ; Laxa, Kadmo
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Statistical Physics; v. 191, n. 12, p. 34-pg., 2024-11-25.
Resumo

We consider a model for a social network with N interacting social actors. This model is a system of interacting marked point processes in which each point process indicates the successive times in which a social actor expresses a "favorable" (+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+1$$\end{document}) or "contrary" (-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}) opinion. The orientation and the rate at which an actor expresses an opinion is influenced by the social pressure exerted on this actor. The social pressure of an actor is reset to 0 when the actor expresses an opinion, and simultaneously the social pressures on all the other actors change by h/N in the direction of the opinion that was just expressed. We prove propagation of chaos of the system, as N diverges to infinity, to a limit nonlinear jumping stochastic differential equation. Moreover, we prove that under certain conditions the limit system exhibits a phase transition described as follows. If h is smaller or equal than a certain threshold, the limit system has only the null Dirac measure as an invariant probability measure, corresponding to a vanishing social pressure on all actors. However, if h is greater than the threshold, the system has two additional non-trivial invariant probability measures. One of these measures has support on the positive real numbers and the other is obtained by symmetrization with respect to 0, having thus support on the negative real numbers. (AU)

Processo FAPESP: 23/12335-9 - Modelagem de redes neuronais como sistemas de processos pontuais interagentes com memória de alcance variado: comparação de modelos e limites de campo médio
Beneficiário:Kádmo de Souza Laxa
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado
Processo FAPESP: 22/07386-0 - Modelagem de redes neuronais como sistemas de processos pontuais interagentes com memória de alcance variado
Beneficiário:Kádmo de Souza Laxa
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado