Busca avançada
Ano de início
Entree


Unsupervised Feature Engineering Approach to Predict DDoS Attacks

Texto completo
Autor(es):
de Neira, Anderson B. ; Borges, Ligia F. ; Araujo, Alex M. ; Nogueira, Michele
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM; v. N/A, p. 6-pg., 2023-01-01.
Resumo

Predicting Distributed Denial of Service (DDoS) attacks is crucial given the large volume of generated attack traffic, particularly that generated by infected Internet of Things (IoT) devices. Attackers conceal their actions to delay detection as much as possible, increasing their damage when effectively launched. Hence, predicting signals of the attack plays a vital role in anticipating DDoS attacks and enhancing service protection. This work presents SEE, an unsupervised feature engineering approach to assist in predicting DDoS attacks. SEE evaluations encompass four experiments employing multiple datasets (CTU-13, CIC-DDoS2019, and IoT-23) and DDoS attacks. The approach predicts a DDoS attack 30 minutes before it effectively starts, reaching up to 100% accuracy. (AU)

Processo FAPESP: 22/06840-0 - Impacto da correlação de fontes heterogêneas na predição de botnets e DDoS
Beneficiário:Ligia Francielle Borges
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 18/23098-0 - MENTORED: da modelagem à experimentação - predizendo e detectando ataques DDoS e zero-day
Beneficiário:Michele Nogueira Lima
Modalidade de apoio: Auxílio à Pesquisa - Temático