Busca avançada
Ano de início
Entree


MIGUE-Sim: Speeding Up Similarity Queries with Native RDBMS Resources

Texto completo
Autor(es):
Eleuterio, Igor A. R. ; Cazzolato, Mirela T. ; Teixeira, Larissa R. ; Gutierrez, Marco A. ; Traina, Agma J. M. ; Traina-, Caetano, Jr.
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: 39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024; v. N/A, p. 8-pg., 2024-01-01.
Resumo

Many applications require storing, managing, and retrieving complex data, such as multidimensional vectors and images in databases. In this paper, we propose MIGUE-Sim, a system to quickly execute exact Range and kNN similarity queries in Postgres. The queries are expressed following a straightforward, SQL-compatible representation seamlessly integrated into the language, whereas the system executes each query using just the native resources of Postgres. MIGUE-Sim uses the Postgres's Cube native extension to perform kNN faster, using the GIST R-Tree index available. The execution of kNN in our system without any index overcame our main competitor by up to 10% in execution time. However, when using GIST R-Tree, MIGUE-Sim can significantly speed up queries - experiments revealed that MIGUE-Sim is up to 96% faster than our closest competitor. We contribute with a framework that uses existing index structures from Postgres to speed up kNN queries with no modifications on the RDBMS; with the evaluation of different ways to write similarity queries in plain SQL; with the implementation of kNN queries with indices already available on Postgres. Our approach is easy to understand, to use, and it is extensible to include other distance functions. (AU)

Processo FAPESP: 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD)
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/11258-2 - Consultas por similaridade e interoperabilidade em bases de dados médicos
Beneficiário:Mirela Teixeira Cazzolato
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado