| Texto completo | |
| Autor(es): |
Torres-Gomez, Alexander
;
Valencia, Fabricio
Número total de Autores: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Journal of Algebra; v. 666, p. 27-pg., 2024-12-06. |
| Resumo | |
We define the concept of a flat pseudo-Riemannian F-Lie algebra and construct its corresponding double extension. This algebraic structure can be interpreted as the infinitesimal analogue of a Frobenius Lie group devoid of Euler vector fields. We show that the double extension provides a framework for generating all weakly flat Lorentzian non-abelian binilpotent F-Lie algebras possessing one-dimensional lightcone subspaces. A similar result can be established for nilpotent Lie algebras equipped with flat scalar products of signature (2, n - 2) where n >= 4. Furthermore, we use this technique to construct Poisson algebras exhibiting compatibility with flat scalar products. (AU) | |
| Processo FAPESP: | 20/07704-7 - Teoria de Morse em grupoides de Lie e stacks |
| Beneficiário: | Fabricio Valencia Quintero |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |