Busca avançada
Ano de início
Entree


Unsupervised techniques to detect quantum chaos

Texto completo
Autor(es):
Nemirovsky, Dmitry ; Shir, Ruth ; Rosa, Dario ; Kagalovsky, Victor
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: LOW TEMPERATURE PHYSICS; v. 50, n. 12, p. 8-pg., 2024-12-01.
Resumo

Conventional spectral probes of quantum chaos require eigenvalues, and sometimes, eigenvectors of the quantum Hamiltonian. This involves computationally expensive diagonalization procedures. We test whether an unsupervised neural network can detect quantum chaos directly from the Hamiltonian matrix. We use a single-body Hamiltonian with an underlying random graph structure and random coupling constants, with a parameter that determines the randomness of the graph. The spectral analysis shows that increasing the amount of randomness in the underlying graph results in a transition from integrable spectral statistics to chaotic ones. We show that the same transition can be detected via unsupervised neural networks, or more specifically, self-organizing maps by feeding the Hamiltonian matrix directly into the neural network, without any diagonalization procedure. (AU)

Processo FAPESP: 21/14335-0 - ICTP Instituto Sul-Americano para Física Fundamental: um centro regional para Física Teórica
Beneficiário:Nathan Jacob Berkovits
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais
Processo FAPESP: 23/11832-9 - Sistemas quânticos de muitos corpos: do caos quântico até tecnologias quânticas
Beneficiário:Dario Rosa
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores