Busca avançada
Ano de início
Entree


An adaptive biased random-key genetic algorithm for the tactical berth allocation problem

Texto completo
Autor(es):
Chaves, Antonio A. ; Oliveira, Rudinei M. ; Goncalves, Jose F. ; Lorena, Luiz A. N.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024; v. N/A, p. 8-pg., 2024-01-01.
Resumo

The Tactical Berth Allocation Problem (TBAP) is an integrated solution approach for berth allocation and quay crane assignment in container terminal operations. TBAP aims to allocate ships to berthing positions and assign them to quay crane profiles with some quay cranes per time step. The objectives are to maximize the total value of the quay crane profiles assigned to ships and minimize the housekeeping costs derived from the transshipment container flows between ships. In this research paper, we develop an adaptive Biased Random-Key Genetic Algorithm (A-BRKGA) to solve the TBAP. The A-BRKGA is a recent method with online parameter control, so users have no visible parameters. The strategy for parameter adapting is based on deterministic rules and self-adaptive schemes. Computational results show that the A-BRKGA is competitive with the current state-of-the-art methods and can find the best-known solutions for most tested instances. (AU)

Processo FAPESP: 22/05803-3 - Problemas de corte, empacotamento, dimensionamento de lotes, programação da produção, roteamento e localização e suas integrações em contextos industriais e logísticos
Beneficiário:Reinaldo Morabito Neto
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/15417-8 - Desenvolvimento de uma meta-heurística híbrida com fluxo de controle e parâmetros adaptativos
Beneficiário:Antônio Augusto Chaves
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores - Fase 2