Busca avançada
Ano de início
Entree


Texto completo
Autor(es):
Costa, J. Santana ; Tahzibi, A.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Ergodic Theory and Dynamical Systems; v. N/A, p. 17-pg., 2024-10-14.
Resumo

For a class of volume-preserving partially hyperbolic diffeomorphisms (or non-uniformly Anosov) $f\colon {\mathbb {T}}<^>d\rightarrow {\mathbb {T}}<^>d$ homotopic to linear Anosov automorphism, we show that the sum of the positive (negative) Lyapunov exponents of f is bounded above (respectively below) by the sum of the positive (respectively negative) Lyapunov exponents of its linearization. We show this for some classes of derived from Anosov (DA) and non-uniformly hyperbolic systems with dominated splitting, in particular for examples described by Bonatti and Viana [SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115(1) (2000), 157-193]. The results in this paper address a flexibility program by Bochi, Katok and Rodriguez Hertz [Flexibility of Lyapunov exponents. Ergod. Th. & Dynam. Sys. 42(2) (2022), 554-591]. (AU)

Processo FAPESP: 17/06463-3 - Aspectos probabilísticos e algébricos de sistemas dinâmicos suaves
Beneficiário:Ali Tahzibi
Modalidade de apoio: Auxílio à Pesquisa - Temático