| Texto completo | |
| Autor(es): |
Costa, J. Santana
;
Tahzibi, A.
Número total de Autores: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Ergodic Theory and Dynamical Systems; v. N/A, p. 17-pg., 2024-10-14. |
| Resumo | |
For a class of volume-preserving partially hyperbolic diffeomorphisms (or non-uniformly Anosov) $f\colon {\mathbb {T}}<^>d\rightarrow {\mathbb {T}}<^>d$ homotopic to linear Anosov automorphism, we show that the sum of the positive (negative) Lyapunov exponents of f is bounded above (respectively below) by the sum of the positive (respectively negative) Lyapunov exponents of its linearization. We show this for some classes of derived from Anosov (DA) and non-uniformly hyperbolic systems with dominated splitting, in particular for examples described by Bonatti and Viana [SRB measures for partially hyperbolic systems whose central direction is mostly contracting. Israel J. Math. 115(1) (2000), 157-193]. The results in this paper address a flexibility program by Bochi, Katok and Rodriguez Hertz [Flexibility of Lyapunov exponents. Ergod. Th. & Dynam. Sys. 42(2) (2022), 554-591]. (AU) | |
| Processo FAPESP: | 17/06463-3 - Aspectos probabilísticos e algébricos de sistemas dinâmicos suaves |
| Beneficiário: | Ali Tahzibi |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |