Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do SciELO, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Machine Learning to Treat Data for the Design and Improvement of Electrochemical Sensors: Application for a Cancer Biomarker

Texto completo
Autor(es):
Gisela Ibáñez Redín [1] ; Daniel C. Braz ; Débora Gonçalves [3] ; Osvaldo N. Oliveira Jr. [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Universidade de São Paulo (USP). Instituto de Física de São Carlos - Brasil
[3] Universidade de São Paulo (USP). Instituto de Física de São Carlos - Brasil
[4] Universidade de São Paulo (USP). Instituto de Física de São Carlos - Brasil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Journal of the Brazilian Chemical Society; v. 36, n. 8 2025-03-31.
Resumo

Label-free immunosensors based on screen-printed carbon electrodes offer a promising platform for the detection of cancer biomarkers. Herein, we explore the use of machine learning techniques to improve the performance of these immunosensors. We evaluate the influence of various redox probes on the analytical response in detecting the cancer biomarker protein p53. Ascorbic acid (AA) was found as the optimal redox probe, exhibiting a sensitivity of 0.26 ng mL-1, attributed to its strong affinity to proteins through hydrogen bonds and electrostatic interactions. We also extracted analytical information from the voltammograms, such as shifts in peak potential and changes in peak width, to construct datasets for supervised machine learning. Using different algorithms including logistic regression, linear discriminant analysis, K-nearest neighbor, Gaussian Naive-Bayes, decision trees, and support vector machine, we identified positive samples spiked with p53 in artificial urine and saliva samples. Through a comparison of immunosensors with distinct molecular architectures, we determined the critical role of redox probe selection, which proves to be more significant than modifying the working electrodes in determining performance. Furthermore, immunosensors with inferior inherent detection ability can achieve comparable performance to those with superior analytical characteristics when feature selection and machine learning algorithms are applied to the voltammograms. These findings illustrate the significance of extracting additional information from differential pulse voltammograms beyond peak current intensity. Furthermore, using machine learning techniques allows one to design biosensors capable of distinguishing biomarkers even in complex samples. (AU)

Processo FAPESP: 20/09835-1 - IARA - Inteligência Artificial Recriando Ambientes
Beneficiário:André Carlos Ponce de Leon Ferreira de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia
Processo FAPESP: 18/22214-6 - Rumo à convergência de tecnologias: de sensores e biossensores à visualização de informação e aprendizado de máquina para análise de dados em diagnóstico clínico
Beneficiário:Osvaldo Novais de Oliveira Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático