Busca avançada
Ano de início
Entree


Convolutional Neural Networks for the Construction of Surrogate Models of Fluid Flows

Texto completo
Autor(es):
Lui, Hugo F. S. ; Wolf, William R.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: AIAA SCITECH 2021 FORUM; v. N/A, p. 15-pg., 2021-01-01.
Resumo

In this work, we present a numerical methodology for construction of surrogate models of fluid flows which combine data-driven system identification and convolutional neural networks. The framework is implemented in a context similar to that of the sparse identification of nonlinear dynamics (SINDy) algorithm with some modifications regarding the regression step. The approach presented in this work allows us to obtain an ODE for each flow variable at each mesh point. This should be beneficial for flow control approaches since every flow state can be modified by a control law. The method is tested for two unsteady compressible flows: the flow past a cylinder at low Reynolds number and the turbulent flow past a plunging airfoil under deep dynamical stall. Results demonstrate that the current methodology provides accurate reconstructions of the high fidelity model. (AU)

Processo FAPESP: 13/08293-7 - CECC - Centro de Engenharia e Ciências Computacionais
Beneficiário:Munir Salomao Skaf
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 19/26196-5 - Simulações de grandes escalas de turbinas axiais supersônicas
Beneficiário:Hugo Felippe da Silva Lui
Modalidade de apoio: Bolsas no Brasil - Doutorado