Busca avançada
Ano de início
Entree


A novel approach for tailoring aluminum alloys for additive manufacturing

Texto completo
Autor(es):
Rojas-Arias, N. ; Coury, F. G. ; Amancio-Filho, S. T. ; Gargarella, P.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING; v. 931, p. 13-pg., 2025-03-14.
Resumo

Wrought aluminum alloys are known for their excellent mechanical properties, but they also exhibit high hotcracking susceptibility, limiting their use in additive manufacturing (AM). While indices such as freezing range, hot-cracking susceptibility index, and critical temperature range, based on the classic Scheil-Gulliver model, have been used to adapt wrought aluminum alloys for AM, they are unable to sufficiently capture the effects of high stresses induced during processing, which contribute to crack formation. In this study, we introduce a novel approach that combines thermodynamic calculations with laser remelting experiments to optimize aluminum alloys for AM. We applied this methodology to modify the AA2017 alloy, starting with thermodynamic calculations that screened hundreds of compositions to optimize solidification behavior using the Scheil-Gulliver model. Nine compositions were selected for further investigation through laser remelting experiments, simulating the stresses experienced during processing. The most promising alloy was then produced as powder via gas atomization and fabricated using Laser Powder Bed Fusion. This new alloy demonstrated a significantly narrower solidification range, a low hot-cracking susceptibility index, and the formation of alpha_Al + Al3CeCu eutectic regions, along with a higher liquid fraction during the final stages of solidification. Unlike the original AA2017, no cracks formed during the processing optimization. This approach led to the development of a new alloy with enhanced mechanical properties, showing substantial improvements in both tensile strength and ductility compared to existing AM aluminum alloys. (AU)

Processo FAPESP: 20/01426-5 - Influência dos parâmetros de processo na microestrutura e propriedades mecânicas de ligas de alumínio fabricadas por manufatura aditiva
Beneficiário:Nicolás Rojas Arias
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 22/00896-3 - Adaptação da composição da liga de alumínio 2017 para reduzir sua susceptibilidade ao trincamento durante a fusão seletiva a laser
Beneficiário:Nicolás Rojas Arias
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado Direto
Processo FAPESP: 17/27031-4 - Influência de parâmetros de processo nas características metalúrgicas de peças fabricadas por manufatura aditiva
Beneficiário:Piter Gargarella
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores