Busca avançada
Ano de início
Entree


One-mode Projection of Bipartite Graphs for Text Classification using Graph Neural Networks

Texto completo
Autor(es):
dos Santos, Nicolas R. ; Minatel, Diego ; Valejo, Alan D. B. ; Lopes, Alneu A.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 40TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING; v. N/A, p. 3-pg., 2025-01-01.
Resumo

Graph Neural Networks (GNNs) have shown remarkable success in text classification through diverse graph types for representing a corpus and strategies to enrich their structure. In this context, bipartite graphs are particularly effective due to their ability to represent dyadic interactions naturally. However, when the focus is on analyzing a single entity type, one-mode projection stands out as a prominent technique. Specifically, it transforms bipartite graphs into unipartite ones consisting of a single node type, linking them based on shared neighbors from the other type. While one-mode projection has been utilized in machine learning, its potential for GNN-based text classification remains unexplored. To address this gap, we propose a novel method called One-mode Projection of Bipartite Graphs for Text Classification (OPTIC). Concretely, OPTIC projects the document partition of a document-word bipartite graph and applies a GNN to the unipartite graph for text classification. Experiments on eight datasets show that OPTIC achieves on-par accuracy on all datasets compared to the baselines. Code and supplementary material are available at https://github.com/nicolasrsantos/optic. (AU)

Processo FAPESP: 22/03090-0 - Análise de grandes volumes de dados políticos e redes complexas: mineração, modelagens e aplicações em Ciência Política Computacional
Beneficiário:Sylvia Iasulaitis
Modalidade de apoio: Auxílio à Pesquisa - Projeto Inicial
Processo FAPESP: 20/09835-1 - IARA - Inteligência Artificial Recriando Ambientes
Beneficiário:André Carlos Ponce de Leon Ferreira de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia
Processo FAPESP: 22/09091-8 - Criminalidade, insegurança e legitimidade: uma abordagem transdisciplinar
Beneficiário:Luis Gustavo Nonato
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Temático
Processo FAPESP: 21/06210-3 - Serviços cientes dos espaços urbanos via federated learning em sistemas de transporte inteligente
Beneficiário:Geraldo Pereira Rocha Filho
Modalidade de apoio: Auxílio à Pesquisa - Regular