Busca avançada
Ano de início
Entree


Predicting temperatures in Brazilian states capitals via Machine Learning

Texto completo
Autor(es):
da Silva, Sidney T. ; Gabrick, Enrique C. ; de Moraes, Ana Luiza R. ; Viana, Ricardo L. ; Batista, Antonio M. ; Caldas, Ibere L. ; Kurths, Juergen
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: European Physical Journal-Special Topics; v. N/A, p. 20-pg., 2025-06-02.
Resumo

Climate change refers to substantial long-term variations in weather patterns. In this work, we employ a Machine Learning (ML) technique, the Random Forest (RF) algorithm, to forecast the monthly average temperature for Brazilian's states capitals (27 cities) and the whole country, from January 1961 to December 2022. To forecast the temperature at k-month, we consider as features in RF: (i) global emissions of carbon dioxide (CO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}), methane (CH4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_4$$\end{document}), and nitrous oxide (N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document}O) at k-month; (ii) temperatures from the previous three months, i.e., (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}, (k-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-2)$$\end{document} and (k-3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-3)$$\end{document}-month; (iii) combination of i and ii. By investigating breakpoints in the times series, we discover that 24 cities and the gases present breakpoints in the 80's and 90's. After the breakpoints, we find an increase in the temperature and the gas emission. Thereafter, we separate the cities according to their geographical position and employ the RF algorithm to forecast the temperature from 2010-08 until 2022-12. Based on i, ii, and iii, we find that the three inputs result in a very precise forecast, with a normalized root mean squared error (NMRSE) less than 0.083 for the considered cases. From our simulations, the better forecasted region is Northeast through iii (NMRSE = 0.012). Furthermore, we also investigate the forecasting of anomalous temperature data by removing the annual component of each time series. In this case, the best forecasting is obtained with strategy i, with the best region being Northeast (NRMSE = 0.090). (AU)

Processo FAPESP: 25/02318-5 - Dinâmica de um modelo vetor-hospedeiro com acoplamento não local
Beneficiário:Enrique Chipicoski Gabrick
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 22/13761-9 - Dinâmica de Sistemas Complexos
Beneficiário:Iberê Luiz Caldas
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Brasil
Processo FAPESP: 18/03211-6 - Dinâmica não linear
Beneficiário:Iberê Luiz Caldas
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 24/14478-4 - Aprendizado de Máquina em Sistemas Complexos
Beneficiário:Iberê Luiz Caldas
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Brasil
Processo FAPESP: 24/05700-5 - Dinâmica não linear
Beneficiário:Iberê Luiz Caldas
Modalidade de apoio: Auxílio à Pesquisa - Temático