Texto completo | |
Autor(es): |
Número total de Autores: 3
|
Afiliação do(s) autor(es): | [1] Univ Catolica Norte, Dept Matemat, Antofagasta - Chile
[2] Univ Fed Amazonas, Inst Ciencias Exatas, Manaus - Brazil
[3] Univ Estadual Campinas, Inst Matemat Estatist & Ciencias Comp, BR-13081970 Campinas, SP - Brazil
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | SIAM JOURNAL ON CONTROL AND OPTIMIZATION; v. 48, n. 4, p. 2636-2650, 2009. |
Citações Web of Science: | 2 |
Resumo | |
Let G be a Lie group. In order to study optimal control problems on a homogeneous space G/H, we identify its cotangent bundle T{*}G/H as a subbundle of the cotangent bundle of G. Next, this identification is used to describe the Hamiltonian lifting of vector fields on G/H induced by elements in the Lie algebra g of G. As an application, we consider a bilinear control system Sigma in R(2) whose matrices generate sl(2). Through the Pontryagin maximum principle, we analyze the time-optimal problem for the angle system P Sigma defined by the projection of S onto the projective line Sigma(1). We compute some examples, and in particular we show that the bang-bang principle does not need to be true. (AU) | |
Processo FAPESP: | 07/06896-5 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos |
Beneficiário: | Luiz Antonio Barrera San Martin |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |