Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Google Scholar, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Wavelet based time-varying vector autoregressive modelling

Texto completo
Autor(es):
Sato‚ J.R. ; Morettin‚ P.A. ; Arantes‚ P.R. ; Amaro‚ E.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: COMPUTATIONAL STATISTICS & DATA ANALYSIS; v. 51, n. 12, p. 5847-5866, 2007.
Resumo

Vector autoregressive (VAR) modelling is one of the most popular approaches in multivariate time series analysis. The parameters interpretation is simple, and provide an intuitive identification of relationships and Granger causality among time series. However, the VAR modelling requires stationarity conditions which could not be valid in many practical applications. Locally stationary or time dependent modelling seem attractive generalizations, and several univariate approaches have already been proposed. In this paper we propose an estimation procedure for time-varying vector autoregressive processes, based on wavelet expansions of autoregressive coefficients. The asymptotic properties of the estimator are derived and illustrated by computer intensive simulations. We also present an application to brain connectivity identification using functional magnetic resonance imaging (fMRI) data sets. (C) 2006 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 03/10105-2 - Séries temporais, análise de dependência e aplicações em atuária e finanças
Beneficiário:Pedro Alberto Morettin
Modalidade de apoio: Auxílio à Pesquisa - Programa PRONEX - Temático