Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Google Scholar, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Universal matrices and strongly unbounded functions

Texto completo
Autor(es):
Koszmider‚ P.
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: MATHEMATICAL RESEARCH LETTERS; v. 9, n. 4, p. 549-566, 2002.
Resumo

Fix an uncountable cardinal lambda. Asymmetric matrix M = (m(alphabeta))(alpha,beta<lambda) whose entries are countable ordinals is called strongly universal if for every positive integer n, for every n x n matrix (b(ij))(i,j<n) and for every uncountable set A = {a : a is an element of A} subset of or equal to [lambda](n) of disjoint n-tuples a = {a(0),...,a(n-1)}< there are a, a' is an element of A such that b(ij) = m(ai a'j) for 0 less than or equal to i, j < n. We go beyond the recent dramatic discoveries for lambda = w(1), w(2) and address the question of the possibility of the existence of a strongly universal matrix for lambda > w(2). Due to the undecidibility of some weak versions of the Ramsey property for lambda greater than or equal to w(2) the positive answer can be at most consistent, but we show that some natural methods of forcing cannot yield that answer for lambda > w(2). We use our method of "forcing with side conditions in semimorasses" to construct generically lambda by lambda strongly universal matrices for any cardinal lambda. The results are proved in more generality, related concepts are investigated, some questions are stated and some application are given. (AU)

Processo FAPESP: 97/10491-7 - Piotr Koszmider | Ohio State University - Estados Unidos
Beneficiário:Lúcia Renato Junqueira
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional