| Texto completo | |
| Autor(es): |
Da Silva, Jr., Natan D.
[1]
;
Fernandes, Tiago
[1]
;
Soci, Ursula P. R.
[1]
;
Monteiro, Alex Willian A.
[1]
;
Phillips, M. Ian
[2]
;
de Oliveira, Edilamar Menezes
[1, 2]
Número total de Autores: 6
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Sch Phys Educ & Sport, Lab Biochem & Mol Biol Exercise, BR-05508900 Sao Paulo - Brazil
[2] Keck Grad Inst, Lab Stem Cells, Claremont, CA - USA
Número total de Afiliações: 2
|
| Tipo de documento: | Artigo Científico |
| Fonte: | MEDICINE AND SCIENCE IN SPORTS AND EXERCISE; v. 44, n. 8, p. 1453-1462, AUG 2012. |
| Citações Web of Science: | 68 |
| Resumo | |
DA SILVA, N. D. JR, T. FERNANDES, U. P. R. SOCI, A. W. A. MONTEIRO, M. I. PHILLIPS, and E. M. DE OLIVEIRA. Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp. 1453-1462, 2012. Purpose: MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. Methods: Female Wistar rats were assigned to three groups: sedentary (S), training 1 (T1, moderate volume), and training 2 (T2, high volume). T1 consisted of 60 min.d(-1) of swimming, five times per week for 10 wk with 5% body overload. T2 consisted of the same protocol of T1 until the eighth week; in the ninth week, rats trained for two times a day, and in the 10th week, rats trained for three times a day. MiRNA and PI3KR2 gene expression analysis was performed by real-time polymerase chain reaction in heart muscle. We assessed markers of training, the cardiac capillary-fiber ratio, cardiac protein expression of VEGF, Spred-1, Raf-1/ERK 1/2, and PI3K/Akt/eNOS. Results: The cardiac capillary-fiber ratio increased in T1 (58%) and T2 (101%) compared with S. VEGF protein expression was increased 42% in T1 and 108% in T2. Cardiac miRNA-126 expression increased 26% (T1) and 42% (T2) compared with S, correlated with angiogenesis. The miRNA-126 target Spred-1 protein level decreased 41% (T1) and 39% (T2), which consequently favored an increase in angiogenic signaling pathway Raf-1/ERK 1/2. On the other hand, the gene expression of PI3KR2, the other miRNA-126 target, was reduced 39% (T1) and 78% (T2), and there was an increase in protein expression of components of the PI3K/Akt/eNOS signaling pathway in the trained groups. Conclusions: This study showed that aerobic training promotes an increase in the expression of miRNA-126 and that this may be related to exercise-induced cardiac angiogenesis, by indirect regulation of the VEGF pathway and direct regulation of its targets that converged in an increase in angiogenic pathways, such as MAPK and PI3K/Akt/eNOS. (AU) | |