Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Simplicity and maximal commutative subalgebras of twisted generalized Weyl algebras

Texto completo
Autor(es):
Hartwig, J. T. [1] ; Oinert, J. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Stanford Univ, Dept Math, Stanford, CA 94305 - USA
[2] Univ Copenhagen, Dept Math Sci, DK-2100 Copenhagen O - Denmark
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Algebra; v. 373, p. 312-339, JAN 1 2013.
Citações Web of Science: 4
Resumo

In this paper we prove three theorems about twisted generalized Weyl algebras (TGWAs). First, we show that each non-zero ideal of a TGWA has non-zero intersection with the centralizer of the distinguished subalgebra R. This is analogous to earlier result's known to hold for crystalline graded rings. Second, we give necessary and sufficient conditions for the centralizer of R to be commutative (hence maximal commutative), generalizing a result by V. Mazorchuk and L Turowska. And third, we generalize results by D.A. Jordan and V. Bavula on generalized Weyl algebras by giving necessary and sufficient conditions for certain TGWAs to be simple, in the case when R is commutative. We illustrate our theorems by considering some special classes of TGWAs and providing concrete examples. We also discuss how simplicity of a TGWA is related to the maximal commutativity of R and the (non-)existence of non-trivial Z(n)-invariant ideals of R. (C) 2012 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 08/10688-1 - Orders de Galois, álgebras de Weyl torcidas generalizadas e suas representações
Beneficiário:Jonas Torbjorn Hartwig
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado