Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

A Soft-Switching Blind Equalization Scheme via Convex Combination of Adaptive Filters

Texto completo
Autor(es):
Silva, Magno T. M. [1] ; Arenas-Garcia, Jeronimo [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Elect Syst Engn, Escola Politecn, BR-05508900 Sao Paulo - Brazil
[2] Univ Carlos III Madrid, Dept Signal Theory & Commun, Leganes 28911 - Spain
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON SIGNAL PROCESSING; v. 61, n. 5, p. 1171-1182, MAR 2013.
Citações Web of Science: 16
Resumo

Blind equalizers avoid the transmission of pilot sequences, allowing a more efficient use of the channel bandwidth. Normally, after a first rough equalization is achieved, it is necessary to switch these equalizers to a decision-directed (DD) mode to reduce the steady-state mean-square error (MSE) to acceptable levels. The selection of an appropriate MSE threshold for switching between the blind and the DD modes is critical to obtain a good overall performance; however, this is not an easy task, since it depends on several factors such as the signal constellation, the communication channel, or the signal-to-noise ratio. In this paper, we propose an equalization scheme that adaptively combines a blind and a DD equalizers running in parallel. The combination is itself adapted in a blind manner, and as a result the overall scheme can automatically switch between the component filters, avoiding the need to set the transition MSE level a priori. The performance of our proposal is illustrated both analytically and through an extensive set of simulations, where we show its advantages with respect to existing hard-and soft-switching equalization schemes. (AU)

Processo FAPESP: 11/13581-6 - Combinação de algoritmos adaptativos e técnicas de aprendizagem de máquina
Beneficiário:Magno Teófilo Madeira da Silva
Modalidade de apoio: Bolsas no Exterior - Pesquisa