Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

DCD-RLS Adaptive Filters With Penalties for Sparse Identification

Texto completo
Autor(es):
Zakharov, Yuriy V. [1] ; Nascimento, Vitor H. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ York, Dept Elect, York Y010 5DD, N Yorkshire - England
[2] Univ Sao Paulo, Dept Elect Syst Engn, BR-05508970 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON SIGNAL PROCESSING; v. 61, n. 12, p. 3198-3213, JUN 2013.
Citações Web of Science: 25
Resumo

In this paper, we propose a family of low-complexity adaptive filtering algorithms based on dichotomous coordinate descent (DCD) iterations for identification of sparse systems. The proposed algorithms are appealing for practical designs as they operate at the bit level, resulting in stable hardware implementations. We introduce a general approach for developing adaptive filters with different penalties and specify it for exponential and sliding window RLS. We then propose low-complexity DCD-based RLS adaptive filters with the lasso, ridge-regression, elastic net, and l(0) penalties that attract sparsity. We also propose a simple recursive reweighting of the penalties and incorporate the reweighting into the proposed adaptive algorithms to further improve the performance. For general regressors, the proposed algorithms have a complexity of O(N-2) operations per sample, where N is the filter length. For transversal adaptive filters, the algorithms require only O(N) operations per sample. A unique feature of the proposed algorithms is that they are well suited for implementation in finite precision, e.g., on FPGAs. We demonstrate by simulation that the proposed algorithms have performance close to the oracle RLS performance. (AU)

Processo FAPESP: 11/06994-2 - Algoritmos de baixo custo computacional para processamento de sinais acústicos
Beneficiário:Vitor Heloiz Nascimento
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 12/50565-1 - Adaptive compressive sensing-aware techniques: desinf algorithms and applications
Beneficiário:Vitor Heloiz Nascimento
Modalidade de apoio: Auxílio à Pesquisa - Regular