Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Extensions of the skew-normal ogive item response model

Texto completo
Autor(es):
Bazan, Jorge Luis [1] ; Branco, Marcia D. [2] ; Bolfarine, Heleno [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Pontificia Univ Catolica Peru, Dept Ciencias, Lima 32 - Peru
[2] Univ Sao Paulo, Dept Estatist, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS; v. 28, n. 1, p. 1-23, FEB 2014.
Citações Web of Science: 0
Resumo

We introduce new applications of the skew-probit IRT model by considering a flexible skew-normal distribution for the latent variables and by extending this model to include an additional random effect for modeling dependence between items within the same testlet. A Bayesian hierarchical structure is presented using a double data augmentation approach. This can be easily implemented in WinBUGS or SAS by considering MCMC algorithms. Several Bayesian model selection criteria, such as DIC, EAIC and EBIC, have been considered; in addition, we use posterior sum of squares of the latent residuals as a global discrepancy measure to model comparison. Two applications illustrate the methodology, one data set related to a mathematical test and another related to reading comprehension, both applied to Peruvian students. Results indicate better performance of the more flexible models proposed in this paper. (AU)

Processo FAPESP: 09/50105-8 - Jorge Luis Bazan Guzman | Pontifícia Universidad Católica del Perú - Peru
Beneficiário:Márcia D'Elia Branco
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional