Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Hardness and inapproximability of convex recoloring problems

Texto completo
Autor(es):
Campelo, Manoel [1] ; Huiban, Cristiana [2] ; Sampaio, Rudini M. [3] ; Wakabayashi, Yoshiko [4]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Fed Ceara, Dept Estat & Matemat Aplicada, Fortaleza, Ceara - Brazil
[2] Univ Fed Pernambuco, Ctr Informat, Recife, PE - Brazil
[3] Univ Fed Ceara, Dept Comp, Fortaleza, Ceara - Brazil
[4] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: THEORETICAL COMPUTER SCIENCE; v. 533, p. 15-25, MAY 8 2014.
Citações Web of Science: 1
Resumo

Given a graph with an arbitrary vertex coloring, the Convex Recoloring Problem (CR) consists in recoloring the minimum number of vertices so that each color induces a connected subgraph. We focus on the complexity and inapproximability of this problem on k-colored graphs, for fixed k 2. We prove a strong complexity result showing that, for each k 2, CR is already NP-hard on k-colored grids, and therefore also on planar graphs with maximum degree 4. For each k 2, we prove that, for a positive constant c, there is no c Inn-approximation algorithm for k-colored n-vertex (bipartite) graphs, unless P = NP. We also prove that CR parameterized by the number of color changes is W{[}2]-hard. For 2-colored (q, q 4)-graphs, a class that includes cographs and P4-sparse graphs, we present linear-time algorithms for fixed q. The same complexity and inapproximability results are obtained for two relaxations of the problem, where only one fixed color or any color is required to induce a connected subgraph, respectively. (C) 2014 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 13/03447-6 - Estruturas combinatórias, otimização e algoritmos em Teoria da Computação
Beneficiário:Carlos Eduardo Ferreira
Modalidade de apoio: Auxílio à Pesquisa - Temático