ProbMetab: an R package for Bayesian probabilistic... - BV FAPESP
Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

ProbMetab: an R package for Bayesian probabilistic annotation of LC-MS-based metabolomics

Texto completo
Autor(es):
Silva, Ricardo R. [1] ; Jourdan, Fabien [2, 3, 4] ; Salvanha, Diego M. [5, 1] ; Letisse, Fabien [2, 3, 4, 6] ; Jamin, Emilien L. [2, 3, 4] ; Guidetti-Gonzalez, Simone [7] ; Labate, Carlos A. [7, 8] ; Vencio, Ricardo Z. N. [1]
Número total de Autores: 8
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Dept Comp & Math FFCLRP USP, LabPIB, BR-14049 Ribeirao Preto - Brazil
[2] INRA, UMR1331, Toxalim, Res Ctr Food Toxicol, F-31931 Toulouse - France
[3] Univ Toulouse, INSA, UPS, INP, Toulouse - France
[4] LISBP, Toulouse - France
[5] Inst Syst Biol, Seattle, WA - USA
[6] CNRS, UMR5504, Toulouse - France
[7] Univ Sao Paulo, Dept Genet ESALQ USP, Piracicaba - Brazil
[8] Lab Nacl Ciencia & Tecnol Bioetanol CTBE, Campinas, SP - Brazil
Número total de Afiliações: 8
Tipo de documento: Artigo Científico
Fonte: Bioinformatics; v. 30, n. 9, p. 1336-1337, MAY 1 2014.
Citações Web of Science: 25
Resumo

We present ProbMetab, an R package that promotes substantial improvement in automatic probabilistic liquid chromatography-mass spectrometry-based metabolome annotation. The inference engine core is based on a Bayesian model implemented to (i) allow diverse source of experimental data and metadata to be systematically incorporated into the model with alternative ways to calculate the likelihood function and (ii) allow sensitive selection of biologically meaningful biochemical reaction databases as Dirichletcategorical prior distribution. Additionally, to ensure result interpretation by system biologists, we display the annotation in a network where observed mass peaks are connected if their candidate metabolites are substrate/ product of known biochemical reactions. This graph can be overlaid with other graph-based analysis, such as partial correlation networks, in a visualization scheme exported to Cytoscape, with web and stand-alone versions. (AU)

Processo FAPESP: 09/53161-6 - Tecnologia da Informação aplicada a genômica para bioenergia: anotação probabilística usando inteligência artificial
Beneficiário:Ricardo Zorzetto Nicoliello Vêncio
Modalidade de apoio: Auxílio à Pesquisa - Programa BIOEN - Regular