Busca avançada
Ano de início
Entree


Bifurcação de pontos de equilíbrio em sistemas acoplados com simetria do tipo produto coroa

Texto completo
Autor(es):
Luci Any Francisco Roberto
Número total de Autores: 1
Tipo de documento: Dissertação de Mestrado
Imprenta: São Carlos.
Instituição: Universidade de São Paulo (USP). Instituto de Ciências Matemáticas e de Computação (ICMC/SB)
Data de defesa:
Membros da banca:
Miriam Garcia Manoel; Isabel Salgado Labouriau; Hildebrando Munhoz Rodrigues
Orientador: Miriam Garcia Manoel
Resumo

Neste projeto estudamos bifurcações de pontos de equilíbrio em sistemas de N células acopladas que possuem um grupo de simetria \"global\" G e cada célula possui sua simetria \"interna\" L, onde G é um subgrupo do grupo SN das permutações de N elementos e L é um grupo de Lie compacto. O acoplamento que consideramos é invariante segundo as simetrias internas de cada célula; neste caso, a combinação dos grupos L e G que leva à simetria total do sistema é a do grupo L produto coroa G, L ≀ G, ou seja, LN ∔ G Relacionamos as bifurcações de pontos de equilíbrio que ocorrem cm sistemas acoplados com grupo de simetria L ≀ G às bifurcações com simetria L ou G. Fazemos um aplicação dos resultados obtidos para um caso não degenerado de N células acopladas com simetria 0(2) ≀ SN. Vemos como a teoria invariante para O(2) ≀ SN está relacionada às teorias invariantes para os grupos O(2) e SN. Verificamos que, a menos de conjugação, existem exatamente N ramos de soluções, a saber, as com subgrupos de isotropias axiais. Além disso, discutimos a estabilidade das soluções e direção dos ramos. (AU)

Processo FAPESP: 01/12533-6 - Bifurcacao de pontos de equilibrio em sistemas acoplados com simetria do tipo produto coroa.
Beneficiário:Luci Any Francisco Roberto
Modalidade de apoio: Bolsas no Brasil - Mestrado