Busca avançada
Ano de início
Entree


Redução no esforço de interação em segmentação de imagens digitais através de aprendizagem computacional

Texto completo
Autor(es):
Bruno Klava
Número total de Autores: 1
Tipo de documento: Tese de Doutorado
Imprenta: São Paulo.
Instituição: Universidade de São Paulo (USP). Instituto de Matemática e Estatística
Data de defesa:
Membros da banca:
Nina Sumiko Tomita Hirata; Roberto de Alencar Lotufo; Paulo Andre Vechiatto de Miranda; Carlos Hitoshi Morimoto; Alexandre Noma
Orientador: Nina Sumiko Tomita Hirata
Resumo

A segmentação é um passo importante em praticamente todas as tarefas que envolvem processamento de imagens digitais. Devido à variedade de imagens e diferentes necessidades da segmentação, a automação da segmentação não é uma tarefa trivial. Em muitas situações, abordagens interativas, nas quais o usuário pode intervir para guiar o processo de segmentação, são bastante úteis. Abordagens baseadas na transformação watershed mostram-se adequadas para a segmentação interativa de imagens: o watershed a partir de marcadores possibilita que o usuário marque as regiões de interesse na imagem; o watershed hierárquico gera uma hierarquia de partições da imagem sendo analisada, hierarquia na qual o usuário pode navegar facilmente e selecionar uma particular partição (segmentação). Em um trabalho prévio, propomos um método que integra as duas abordagens de forma que o usuário possa combinar os pontos fortes dessas duas formas de interação intercaladamente. Apesar da versatilidade obtida ao se integrar as duas abordagens, as hierarquias construídas dificilmente contêm partições interessantes e o esforço de interação necessário para se obter um resultado desejado pode ser muito elevado. Nesta tese propomos um método, baseado em aprendizagem computacional, que utiliza imagens previamente segmentadas para tentar adaptar uma dada hierarquia de forma que esta contenha partições mais próximas de uma partição de interesse. Na formulação de aprendizagem computacional, diferentes características da imagem são associadas a possíveis contornos de regiões, e esses são classificados como contornos que devem ou não estar presentes na partição final por uma máquina de suporte vetorial previamente treinada. A hierarquia dada é adaptada de forma a conter uma partição que seja consistente com a classificação obtida. Essa abordagem é particularmente interessante em cenários nos quais lotes de imagens similares ou sequências de imagens, como frames em sequências de vídeo ou cortes produzidas por exames de diagnóstico por imagem, precisam ser segmentadas. Nesses casos, é esperado que, a cada nova imagem a ser segmentada, o esforço de interação necessário para se obter a segmentação desejada seja reduzido em relação ao esforço que seria necessário com o uso da hierarquia original. Para não dependermos de experimentos com usuários na avaliação da redução no esforço de interação, propomos e utilizamos um modelo de interação que simula usuários humanos no contexto de segmentação hierárquica. Simulações deste modelo foram comparadas com sequências de interação observadas em experimentos com usuários humanos. Experimentos com diferentes lotes e sequências de imagens mostram que o método é capaz de reduzir o esforço de interação. (AU)

Processo FAPESP: 09/16852-0 - Construção de hierarquias de partições de imagens integrando técnicas de aprendizagem computacional ao watershed hierárquico
Beneficiário:Bruno Klava
Linha de fomento: Bolsas no Brasil - Doutorado